Find schools
When you click on a sponsoring school or program advertised on our site, or fill out a form to request information from a sponsoring school, we may earn a commission. View our advertising disclosure for more details.
Environmental engineers must have at least a bachelor’s degree to practice. Prospective students should look for programs accredited by the Accreditation Board of Engineering and Technology (ABET) or other reputable regional entities. ABET accreditation verifies that an engineering program meets established quality standards and best practices and is also required by many graduate programs, licensing boards, professional organizations, and employers.
Featured Civil & Environmental Engineering Programs | ||
---|---|---|
Arizona State University | Construction Management and Technology (MS) | Visit Site |
Arizona State University | Earth & Environmental Sciences (BS) | Visit Site |
Arizona State University | Sustainability (BS) | Visit Site |
Arizona State University | Sustainable Engineering (MSE) | Visit Site |
Ohio University | Online MSCE - Civil Engineering | Visit Site |
Ohio University | Online MSCE - Construction Engineering Management | Visit Site |
Ohio University | Online MSCE - Environmental Engineering | Visit Site |
Ohio University | Online MSCE - Structural Engineering | Visit Site |
Southern New Hampshire University | Online BS - Environmental Science | Visit Site |
Southern New Hampshire University | Online MS - Construction Management | Visit Site |
sponsored
×
When you click on a sponsoring school or program advertised on our site, or fill out a form to request information from a sponsoring school, we may earn a commission. View our advertising disclosure for more details. |
One can earn ABET-accredited degrees online or on campus. Students enrolled in online environmental engineering programs can usually satisfy hands-on, practical requirements within their home communities.
Environmental engineering programs provide the education one needs to be licensed, earn certifications, and succeed in the field. Some, but not all engineering schools offer bachelor’s degrees in environmental engineering specifically. It is not uncommon for future professionals to attend programs in related fields such as civil, chemical, or general engineering before gaining specialized training in graduate school or on the job.
Students are encouraged to find programs incorporating “co-ops” (i.e., they award credit for structured work experience). Doing so can help students meet future licensing and employment requirements. Some colleges offer combined five-year bachelor’s and master’s degrees, an accelerated option for students which can be more cost-effective than pursuing the two degrees separately.
Every environmental engineering program establishes its own admissions criteria; more rigorous programs usually have more rigorous requirements. Not surprisingly, highly competitive programs have steeper GPA and exam requirements and might even require an interview. Examples of typical admission requirements from real environmental engineering schools include:
Bachelor’s programs in environmental engineering usually offer a range of classroom, lab, and field-based components. Students balance required general education and core engineering courses with specialized electives. Here are some typical courses in undergraduate environmental engineering programs:
Master’s degrees in environmental engineering are not necessarily required to enter the field, but forgoing them can limit students’ future professional roles and licensing opportunities. Graduate-level environmental engineering curricula are more advanced and specialized than undergraduate programs. Here are just some of the concentrations students pursuing master’s degrees might choose:
Specializations
As one might expect, graduate programs in environmental engineering have steeper requirements than bachelor’s programs. The following criteria are examples taken from real schools across the nation. Note that requirements can vary significantly from one school to the next. For instance, some master’s programs only admit candidates with a certain number of years of professional experience, while others admit students fresh out of bachelor’s programs.
Many students earning master’s degrees in environmental engineering dedicate the first year to core engineering coursework and the second to electives that reflect their interests and/or formal concentrations. Examples of classes include:
Most environmental engineers cannot practice independently without being licensed. According to the National Council of Examiners for Engineering and Surveying (NCEES), licensing requirements are set by individual states, which means they can vary. The Council advises candidates to check licensing requirements in the state where they intend to work. Readers can research state requirements through the NCEES.
Some states require environmental engineering students and recent graduates to earn special Engineer in Training (EIT) or Engineer Intern (EI) licenses by passing the Fundamentals of Engineering (FE) exam.
The FE exam verifies candidates have the foundational safety and engineering knowledge necessary to work in the field. The NCEES offers FE exams in several concentrations, including the FE – Environmental Engineering. According to the Council’s official website, this exam explores knowledge in the following areas:
Undergraduate environmental engineering curricula are often designed with FE exam requirements in mind. Students can usually find this information online or by contacting the academic department overseeing the program.
Environmental engineering graduates who meet state practice requirements—including those related to EIT or EI licensing—are free to enter the field, but only under the direction of Professional Engineers (PEs), who are discussed below. Work and any practical co-op experience completed in bachelor’s or master’s environmental engineering programs prepare new engineers to eventually become PEs themselves. Most board and professional certifications also require a certain number of years in the field.
Like master’s degrees in environmental engineering, a PE license is a voluntary but valuable credential. The qualifying exam consists of 80 questions in environmental engineering, administered in a nine-hour session.
Professional Engineers typically enjoy higher earnings and advancement potential than non-credentialed peers. They can also practice independently and complete a wider variety of tasks. Among them:
Environmental engineers must meet the following criteria to become licensed PEs:
Board and professional certifications are additional voluntary, yet highly beneficial credentials. These certifications demonstrate that an environmental engineer is truly an expert in the field, whether at large or within one specialized area. The following are the most common types of advanced certifications.
The American Society of Civil Engineers (ASCE) board certification is a credential for highly skilled engineers. Because environmental engineering is considered a subfield of civil engineering, the ASCE offers board certification in many concentrations relevant to them.
Specializations
Environmental engineers can become certified in the following specializations:
Requirements
Eligible candidates must have master’s degrees, PE licenses, and eight years of post-licensure engineering experience. ASCE certifications are overseen by Civil Engineering Certification, Inc. and accredited by the Council of Engineering & Scientific Specialty Boards (CESB).
The American Academy of Environmental Engineers & Scientists also offers board certification specifically for environmental engineers. Candidates who meet the Academy’s requirements can call themselves Board Certified Environmental Engineers (BCEE). Environmental engineering is a very diverse field, however, so one typically becomes board-certified in one of the following concentrations:
Specializations
Requirements
A BCEE-designated environmental engineer is considered a true expert in whatever area in which he or she is certified. Such an advanced credential is only available to those with the education and experience necessary to sustain that role. Eligibility requirements include:
Several environmental engineering organizations offer professional certifications, which usually target a particular skill or specialty. These certifications can give one an edge when competing for jobs or advancements. Examples of other relevant professional certifications and associated organizations include:
Aspiring environmental engineers may be curious about potential earnings and projected growth of openings into the future. Fortunately for people seeking careers in this field, environmental engineering is both relatively lucrative and secure concerning future job opportunities.
The U.S. Bureau of Labor Statistics (BLS May 2022) reported environmental engineers earned a mean annual salary of $100,220. Wages were highest for professionals working in architectural, engineering, and related services followed by management, scientific, and technical consulting services, and state government. In more detailed terms, here’s a breakdown of salary data in environmental engineering:
United States (45,440 environmental engineers employed): $101,670 average
Also, data from PayScale (2024)—a site for self-reported salaries—suggests that environmental engineers with project management, regulatory compliance, environmental compliance, and engineering design experience also tend to earn more.
Among the environmental engineers reporting their annual salaries, PayScale found the following percentiles:
Government efforts to improve water quality and efficiency, clean contaminated sites, and enforce environmental regulations drive demand for environmental engineers.
The BLS (2022) projected that environmental engineer employment would grow by 4 percent between 2021 and 2031. Prospects are generally best for candidates with master’s degrees.
Lastly, professional and educational environmental engineering organizations support students and professionals throughout their careers. They provide career and training information, professional networking opportunities, continuing education courses, and more. Now-and-future environmental engineers may find the following agencies helpful:
Environmental engineers apply their math, science, and engineering savvy to prevent and solve environmental problems. One might think such a field is too specialized to offer much professional variation, but there is a wealth of career paths in this high-growth area of the discipline.
Earning a master’s degree in civil engineering can lead to careers in urban and regional planning, landscape architecture, construction management, and surveying, among others.
The cost of energy, the rise of illnesses related to pollution, and most importantly, climate change, have all prompted engineers to come up with sustainable ideas for development and innovation. These ideas range from the construction of residential and commercial buildings designed to be environmentally friendly to the development of new technologies for pollution control, waste disposal, or other public health concerns. Sustainable engineering uses current resources in an optimal manner so that it does not harmfully impact the environment, ensuring that present and future generations live in a safe and healthy world.
While it may be the oldest field of engineering, civil engineering is a field embracing modern approaches and applying them to major problems like urban traffic congestion, water harvesting and purification, and infrastructure deterioration. These professors are helping to lead the way.
Meet 20 professors who teach their students to protect us from environmental threats, and ultimately reduce or eliminate them.